Results of a longitudinal study of the prevalence of \textit{Escherichia coli} O157:H7 on cow-calf farms

Jan M. Sargeant, DVM, PhD; Jerry R. Gillespie, DVM, PhD; Richard D. Oberst, DVM, PhD; Randall K. Phebus, PhD; Doreene R. Hyatt, PhD; Lalit K. Bohra, MS; John C. Galland, PhD

Objective—To describe the frequency and distribution of \textit{Escherichia coli} O157:H7 in the feces and environment of cow-calf herds housed on pasture.

Sample Population—Fecal and water samples for 10 cow-calf farms in Kansas.

Procedure—Fecal and water samples were obtained monthly throughout a 1-year period (3,152 fecal samples from 2,058 cattle; 199 water samples). \textit{Escherichia coli} O157:H7 in fecal and water samples was determined, using microbial culture.

Results—\textit{Escherichia coli} O157:H7 was detected in 40 of 3,152 (1.3%) fecal samples, and 40 of 2,058 (1.9%) cattle had \textit{E. coli} in more than 1 sample. Significant differences were not detected in overall prevalence among farms. However, significant differences were detected in prevalence among sample collection dates. \textit{Escherichia coli} O157:H7 was detected in 3 of 199 (1.5%) water samples.

Conclusions and Clinical Relevance—Implementing control strategies for \textit{E coli} O157:H7 at all levels of the cattle industry will decrease the risk of this organism to the human food chain. Devising effective on-farm strategies to control \textit{E coli} O157:H7 in cow-calf herds will require an understanding of the epidemiologic characteristics of this pathogen. (Am J Vet Res 2000;61:1375–1379)

During the past decade, \textit{Escherichia coli} O157:H7 has emerged as an important public health concern. Infection of humans with this pathogen is associated with a range of clinical syndromes, including mild to severe bloody diarrhea and hemolytic uremic syndrome, and it can result in death.\(^1\) In numerous disease outbreaks, sources of bacteria have been traced to contaminated water and foods, including beef products.\(^1\) Estimates of the annual incidence of reported \textit{E coli} O157:H7 infections range from 2.1 cases/100,000 people in Washington in 1987\(^7\) to 8 cases/100,000 people in health management organizations in the United States.\(^2\) Most cases occur sporadically during the summer months.\(^3\)\(^4\)

In addition to costs directly associated with disease in humans, reports of \textit{E coli} O157:H7 outbreaks may lead to a loss of consumer confidence in the safety of food products. Within the agricultural industry, the cost of recalling potentially contaminated foods can be high, and the perception that meat may contain \textit{E coli} O157:H7 could affect export markets.

Despite the disease-causing potential of \textit{E coli} O157:H7 in humans, the organism does not appear to cause disease in cattle.\(^6\)\(^8\) Therefore, healthy cattle harboring \textit{E coli} O157:H7 may enter the food chain. The USDA-Food Safety Inspection Service has recognized that many foodborne human pathogens are not associated with grossly visible lesions on carcasses or organs of animals. Therefore, to ensure the safety of meat products, Hazard Analysis and Critical Control Point (HACCP) programs have been instituted in the meat-processing industry. These programs involve identification of critical points for contamination or transmission of pathogens and the establishment of control programs at these critical points to decrease risk. There is considerable interest in extending HACCP or other pathogen-control programs to farms to further minimize the risk of pathogens entering the human food chain. However, current knowledge of the natural ecologic characteristics of \textit{E coli} O157:H7 in beef cattle is insufficient to enable design of effective control programs.

Studies to estimate the prevalence of \textit{E coli} O157:H7 have been conducted in dairy cattle,\(^9\)\(^10\) beef cattle in feedlots,\(^9\)\(^14\) cattle housed on pasture,\(^9\) and cattle at slaughter.\(^11\)\(^15\) Those studies in beef cattle involved estimates of prevalence at a single point in time. Longitudinal studies to provide information on shedding patterns of \textit{E coli} O157:H7 in beef cattle housed on pasture have not been performed. Therefore, the objective of the study reported here was to determine the frequency and distribution of \textit{E coli} O157:H7 throughout a 1-year period in 10 cow-calf herds in Kansas.

Materials and Methods

Study population—The study group consisted of 10 commercial cow-calf farms located in northeast Kansas. Farms were selected for the study on the basis of the willingness of the owners to participate in a year-long study and time of year of parturition for the herd (spring rather than fall or throughout the year). Five farms had < 100 cows, and 5 herds had > 300 cows. The study was initiated in December 1996 (prior to the start of the calving season) and continued until December 1997 (cows) or the period immediately prior to weaning in fall 1997 (calves). Each farm was visited approximately monthly for a 1-year period. Fresh fecal samples (approximately 50 g) were collected immediately after a cow was observed defecating. At each visit, fecal samples were collected from approximately 10% of the cows and 10% of the calves (after start of the calving season and before weaning) in
the herd as well as all bulls that were available. When necessary, farms were visited on consecutive days to obtain a sufficient number of samples for that month; therefore, feces from a specific animal could have been collected more than once in a monthly sample. Fecal samples were identified on the basis of animal. Most adult cattle were identified on the basis of ear tags. At some farms, calves were identified uniquely by ear tags with a similar number code as for the cows. On other farms, individual calves could not be identified uniquely. Whenever possible, water samples (approx 50 ml) were obtained from all water sources available to each herd.

Microbial culture—Samples were processed on the same day on which they were collected. Feces (10 g) or water (10 ml) was mixed with 90 ml of EHEC enrichment broth (EEB)\(^1\) in a stomacher for 30 seconds. Broth was incubated under static conditions at 37 C for 12 hours. After incubation, 1 ml of broth was removed and added to 20 µg of anti-O157–coated magnetic beads.\(^3\) The bead-broth mixture was mixed at room temperature (24 C) for 30 minutes, after which it was placed in a magnetic block for 5 minutes. Broth then was removed, using a pipette, and the beads were washed in 1 ml of PBS solution (pH 7.5) and vortexed. Beads were separated out again, using the magnetic block, and washed twice more. The final mixture was suspended in 200 µl of PBS solution.

Prior to March 22, 1997, 100 µl of bead suspension was plated directly onto sorbitol MacConkey agar supplemented with sodium tellurite and cefixime (CT-SMAC) and incubated overnight at 37 C. After that date, an additional enrichment phase was added; the resuspended beads (200 µl) were added to 9 ml of EEB and incubated for an additional 18 hours at 37 C. After incubation, a swab specimen was obtained from the broth, plated on CT-SMAC (streaming for isolation), and incubated overnight at 37 C. After incubation, non-sorbitol-fermenting (gray-white) colonies were transferred to blood agar plates and incubated overnight at 37 C. Isolates were tested for the O157 and H7 antigens, using latex agglutination.\(^1\) Isolates were confirmed as E coli by use of a biochemical test strip.\(^1\)

Statistical analysis—Prevalence of E coli O157:H7 was calculated as the number of fecal samples (or cattle) with positive results divided by total number of fecal samples (or cattle) tested. Proportions of positive results among herds, sample collection dates, and sample types were compared, using the χ\(^2\) test for homogeneity of proportions.\(^17\) A χ\(^2\) test was used to test for associations between fecal shedding of E coli O157:H7 in cow-calf pairs. Because the sample size was small, the associated P-value was calculated, using the Fisher exact test.\(^17\)

Results

Overall, 40 of 3,152 (1.3%) fecal samples had positive results for E coli O157:H7. The number of cattle that had positive results on at least 1 fecal sample was 40 of 2,058 (1.9%). Number of fecal samples collected per animal ranged from 1 to 8, and the interval between sample collections ranged from 1 to 347 days. As the number of samples collected per animal increased, the likelihood of obtaining at least 1 sample with positive results also increased significantly (P < 0.001; Table 1). None of the cattle were shedding E coli O157:H7 at more than 1 sample collection. Of the 23 cattle with positive results that had samples collected more than once, 11 had positive results on the first collection date on which samples were obtained.

All 10 farms had at least 1 fecal sample with positive results during the study period (Table 2). The interval between sample collections for farms ranged from 1 to 77 days. Overall prevalence of positive fecal samples for each herd ranged from 0.7 to 2.3%, and these values did not differ significantly (P = 0.73). However, the 5 herds with a small number of cattle (< 100 cows/ herd) had a higher prevalence (1.75%), but not significantly so (P = 0.07), than the 5 herds with > 300 cows/ herd (1.09%).

Prevalence of samples with positive results collected at each farm visit varied significantly (P < 0.001) from 0 to 33% (Fig 1). Significant differences were not detected in the prevalence of fecal shedding of E coli O157:H7 for each month between April and December.

Table 1—Number and proportion of cattle with positive results for Escherichia coli O157:H7 in fecal samples, determined on the basis of the number of times samples were collected from a specific animal

<table>
<thead>
<tr>
<th>Samples per animal</th>
<th>No. of cattle</th>
<th>No. of positive cattle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,413</td>
<td>17 (1.2)</td>
</tr>
<tr>
<td>2</td>
<td>386</td>
<td>8 (2.1)</td>
</tr>
<tr>
<td>3</td>
<td>149</td>
<td>6 (4.0)</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>3 (5.1)</td>
</tr>
<tr>
<td>≥ 5</td>
<td>51</td>
<td>6 (11.8)</td>
</tr>
<tr>
<td>Total</td>
<td>2,058</td>
<td>40 (1.9)</td>
</tr>
</tbody>
</table>

Table 2—Detection of E coli O157:H7 in fecal samples obtained from 10 cow-calf farms in Kansas, by herd

<table>
<thead>
<tr>
<th>Herd</th>
<th>No. of cattle / No. of samples</th>
<th>No. positive for E coli O157:H7*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small herds (< 100 cows)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>80/128</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>98/141</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>154/289</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>66/124</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>142/242</td>
<td>5</td>
</tr>
<tr>
<td>Large herds (> 300 cows)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>440/671</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>332/485</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>186/276</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>333/452</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>252/344</td>
<td>4</td>
</tr>
</tbody>
</table>

*None of the cattle had positive results on more than 1 sample. Therefore, No. of fecal samples with positive results is equivalent to No. of cattle with positive results.

Figure 1—Frequency distribution for the prevalence of Escherichia coli O157:H7 in cattle among 154 sample collection dates for samples of feces and water obtained from 10 cow-calf farms in Kansas (1 farm/sample collection date).
10 cow-calf farms in Kansas, by type of sample

Table 3—Detection of E coli O157:H7 in samples obtained from 10 cow-calf farms in Kansas, by month.

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>No. of samples</th>
<th>No. positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cow</td>
<td>2,313</td>
<td>28 (1.2)</td>
</tr>
<tr>
<td>Calf</td>
<td>804</td>
<td>11 (1.4)</td>
</tr>
<tr>
<td>Bull</td>
<td>35</td>
<td>1 (2.9)</td>
</tr>
<tr>
<td>Total</td>
<td>3,152</td>
<td>40 (1.3)</td>
</tr>
<tr>
<td>Water</td>
<td>199</td>
<td>3 (1.5)</td>
</tr>
</tbody>
</table>

Figure 2—Prevalence of E coli O157:H7 in 3,152 fecal samples and 199 water samples obtained from 10 cow-calf farms in Kansas, by month.

Table 3—Detection of E coli O157:H7 in samples obtained from 10 cow-calf farms in Kansas, by type of sample

Discussion

The observed prevalence of E coli O157:H7 for specific cattle and herds was slightly higher in the study reported here for cattle in Kansas than in a study of cattle housed on pasture in Washington.7 These results may reflect an actual geographic difference or may have been attributable to differences in diagnostic testing methods or sample collection strategies used. Diagnostic methods are evolving to increase the sensitivity for detection of E coli O157:H7, and differences in laboratory methods will influence determination of prevalence.18-20 In our study, the method was modified after the first 3 months to include an enrichment phase, which increases the sensitivity for detection of E coli O157:H7 in meat samples.21

Samples of fresh feces were collected only after cattle were observed defecating, as opposed to per-rectal sample collection used in numerous other studies. Our method could have biased the results if cattle shedding E coli O157:H7 defecated more often than nonshedding cattle. Cattle in the region are housed on large pastures and handled infrequently, and there is not a convenient way to restrain them for sample collection. Researchers previously suggested that most animals shedding E coli O157:H7 are not ill,22 and none of the cattle from which we collected samples in this study were identified as ill by the producer or investigators. Therefore, we do not believe that the sample collection method preferentially selected cattle that were shedding E coli O157:H7.

The study reported here was longitudinal in nature, with samples collected approximately monthly throughout a 1-year period. Surveys in dairy cattle involving collection of a single sample tend to find a lower prevalence of E coli O157:H7, compared with results for longitudinal studies. The 100% herd-level prevalence found in this study supports the view that E coli O157:H7 is widespread in cattle herds. The probability of identifying specific cattle shedding E coli O157:H7 in feces for at least 1 sample collection increased as the number of sample collections increased; however, despite multiple samples from 645 cattle during the study period, none of the cattle shed bacteria for more than 1 sample collection. This suggests that fecal shedding of E coli O157:H7 in specific cattle is transient or intermittent, which agrees with studies on fecal shedding patterns in dairy cattle.23,24 Therefore, collection of samples of cattle at a single point in time for prevalence estimates of E coli O157:H7 generally would be expected to underestimate herd-level prevalence.

In other studies, investigators have reported an increased prevalence during the summer months,6-8,11,22 herd-level clustering,11,25 and peaks in within-herd prevalence over time.23,26 These differences in prevalence have implications for devising control programs. Because the culturing methods changed during our study, ascertaining the extent to which season influenced the prevalence of E coli O157:H7 was not possible. However, an increase was not apparent in the warmer months, compared with cooler months in which the same diagnostic methods were used. Clustering of herd-level prevalence suggests that risk factors may influence shedding patterns. Studies in dairy23 and feedlot7 cattle have identified associations between feeding and management factors and detection of E coli O157:H7. In our study, we did not detect significant differences in prevalence among farms. This may have been attributable to differing management and environment for cattle housed on pastures, com-
pared with other segments of the cattle industry. However, only a few farms in a small geographic area were surveyed. Therefore, further studies will be necessary to confirm or dispute the lack of farm-level clustering of the prevalence of _E. coli_ O157:H7 in cattle housed on pasture.

The finding of periodic increases in within-herd prevalence of _E. coli_ O157:H7, with periods of non-shedding between those peaks, is in agreement with studies in dairy12,21,22 and feedlot25 cattle. It suggests time-dependent risk factors for fecal shedding of _E. coli_ O157:H7. These peaks in shedding may represent exposure of cattle to a common, but time-limited, source of infection. Determining the reasons for these peaks, as well as determining specific herd-management risk factors, is important for devising effective on-farm control programs.

Studies in dairy cattle have documented differences in the prevalence of _E. coli_ O157:H7 among age groups,21,22,28 but such differences were not found in the study of beef cattle reported here. This may have been a result of differences in management of dairy cattle and cow-calf operations. Dairy cattle have differing types of housing and are raised in separate age groups that receive specific diets. Shere et al28 found that dairy calves first had positive test results following a change from individual to group housing. Cows and calves housed on pasture remain together prior to weaning, and from individual to group housing. Cows and calves housed on pasture remain together prior to weaning. Because the number of matched cow-calf pairs was determined to be at a greater risk for shedding

Food and water sources as their dams. In this study, calves did not appear to be at a greater risk for shedding _E. coli_ O157:H7 when their dam had positive test results (ie, were shedding _E. coli_ O157:H7). However, because the number of matched cow-calf pairs was small, the power to detect a difference was low, and the comparison was made for shedding status during the entire course of the study rather than at specific sample collection dates.

References

